Data Pipeline Tools: Top 7 Explained ​

The 7 Best Data Pipeline Tools In 2024

Table of Contents

Best Data Pipeline Tools 

As data volumes explode across enterprises, seamlessly moving information from source to destination is critical. This is where robust data pipeline tools come into play.

In this article, we compare the top 7 data pipeline solutions to consider in 2025 based on features, strengths, and pricing. Whether you need an intuitive visual interface or advanced customization, this guide will help you find the best fit for your data integration needs.

Key topics covered:

  • What is a data pipeline and why is it important?
  • List of the best data pipeline tools
  • Pricing comparison
  • FAQs

With the exponential growth of data, having a future-proof data pipeline solution is non-negotiable. Use this guide to streamline data flows and unlock deeper insights.

What is a data pipeline?

A data pipeline is a set of processes and tools that facilitate the automated and efficient flow of data from various sources to a destination, typically a data warehouse, storage  backend, analytics platform or even a business application. It involves collecting, processing, and moving data in a structured manner, ensuring its availability and usability for analysis, reporting, data activation and other business purposes.

In essence, a data pipeline automates the movement and transformation of data from disparate sources into a usable format for various applications.

Why do you need a data pipeline tool?

  • Optimizing Efficiency: Automate manual data tasks, freeing up resources for strategic initiatives. Avoid repetitive manual exports and imports.
  • Ensuring Data Quality and Single Source of Truth: Clean, consistent data fuels accurate insights and reliable analysis. Centralize data and provide a single source of Truth to the organization.
  • Scaling with Growth: Accommodate increasing data volumes and evolving business needs.

As we step into 2024, the demand for robust data pipeline tools has never been higher. With a crowded market packed with several options, choosing the best fit can be overwhelming. 

Data Pipeline Tools: Top 7

We share the top 7 data pipeline tools, highlighting their strengths and considerations to help you streamline your data integration:

Data Pipeline tools List

 

1. Peliqan: All-in-one Data Platform

Peliqan - Data Pipeline Tool

Peliqan takes the top spot for its intuitive visual interface, zero-code approach, and cloud-native architecture. It empowers users of all technical levels to build complex data pipelines without writing a single line of code. 

Peliqan’s low-code interface facilitates seamless integrations with diverse data sources, including databases, APIs, SaaS applications, and cloud storage platforms. Peliqan’s pre-built connectors and data transformations simplify complex tasks, while its automated data scheduling and monitoring ensure smooth operations.

Key Features:

  • Wide range of connectors: Integrates with over 100+ data sources and applications.
  • Spreadsheet UI and magical SQL: Explore data in a rich spreadsheet UI. Use Magical SQL to combine and transform data. Use your favorite BI tool such as Microsoft Power BI or Metabase.
  • Data Activation: Create data apps in minutes. Implement data alerts, distribute custom reports by email (PDF, Excel) , implement Reverse ETL flows and much more.
  • Low-code Python for developers: Developers can write, test, execute and schedule low-code Python scripts to work with their data.

Considerations:

  • Peliqan is a relatively new player in the market, but its feature set and ease of use make it a promising contender.
  • It may not be the ideal choice for streaming data processing (e.g. IoT).

2. Apache Airflow: Schedule and Monitor Workflows

data pipeline tool - Apache Airflow

Apache Airflow reigns supreme in the open-source realm, offering a robust and flexible platform for building complex data pipelines. Its Python-based syntax requires coding skills but provides granular control and customization. 

Airflow’s strengths lie in its distributed architecture, robust scheduling features, and extensive community support. With a vibrant ecosystem of plugins and connectors, it integrates seamlessly with diverse data sources and tools.

Key Features:

  • Open-source and highly customizable: Ideal for developers and advanced users.
  • Distributed architecture: Scales efficiently to handle large-scale data volumes.
  • Robust scheduling capabilities: Supports complex workflows and dependencies.
  • Large community and ecosystem: Comprehensive documentation, plugins, and support resources.

Considerations:

  • Airflow requires programming knowledge and can have a steeper learning curve compared to visual tools.
  • Setting up and managing an Airflow instance can be resource-intensive, especially for smaller teams.

3. AWS Glue: Serverless Data Integration

Data Management Tool - AWS Glue

AWS Glue offers a serverless data integration service specifically designed for the AWS cloud platform. It leverages AWS resources and services to automate data extraction, transformation, and loading for data lakes and data warehouses. 

Glue’s serverless nature eliminates infrastructure management and simplifies scaling with changing data volumes.

Key Features:

  • Serverless data integration: Cost-effective and scalable for AWS environments.
  • Integrates with various AWS services: Leverages existing cloud infrastructure.
  • Visual and code-based development options: Flexibility for user skills.
  • Automatic schema discovery and data cataloging

Considerations:

  • AWS Glue may not be the best choice for on-premise deployments or hybrid cloud environments.
  • Its pricing model is based on AWS resource usage, which can be complex to track and manage.

4. Hevo Data: ETL, Data Integration & Data Pipeline Platform

Hevo Data ETL tool

Hevo Data stands out for its real-time data streaming capabilities, enabling continuous data flow into your data warehouse. It supports a wide range of data sources and offers pre-built connectors for popular cloud applications. 

Hevo’s data warehousing automation simplifies data storage and management, making it ideal for real-time analytics and reporting.

Key Features:

  • Real-time data streaming: Continuously ingests data for immediate analysis.
  • Automated data warehousing: Simplifies data storage and management.
  • Visual interface: User-friendly for non-technical users.

Considerations:

  • Hevo’s real-time focus may not be necessary for all use cases.
  • Its pricing model is based on data volume and features used.

5. Stitch Data: Simple, Extensible Cloud ETL 

Data Pipeline Tool Stitch Data

Stitch Data provides an efficient data integration platform specifically designed for cloud analytics platforms like Looker, Google Analytics, and Amplitude. 

Its user-friendly interface streamlines data ingestion from various sources and automates schema management. Stitch’s focus on analytics-ready data makes it ideal for business intelligence and data visualization users.

Key Features:

  • Focused on cloud analytics platforms: Seamless integration with leading BI and visualization tools.
  • Automated schema management: Simplifies data modeling and preparation.
  • Visual interface: Easy to use for business analysts.

Considerations:

  • Stitch’s focus on cloud analytics platforms limits its integration with other data destinations like data lakes or on-premise databases.
  • Its acquisition by Trifacta may lead to changes in functionality or pricing in the future.

6. Fivetran: Automated Data Movement Platform

Fivetran ETL tool

Fivetran simplifies data integration with popular cloud data warehouses like Snowflake, Redshift, and BigQuery. Its fully managed ELT (Extract, Load, Transform) approach automates data ingestion, transformation, and loading, taking the burden off data engineers. 

Fivetran excels in data schema management, change data capture, and automatic updates, ensuring data accuracy and freshness in your data warehouse.

Key Features:

  • Fully managed ELT: Automates data integration for popular cloud data warehouses.
  • Automated schema management: Handles schema changes and updates seamlessly.
  • Change data capture (CDC): Ensures only new and updated data is loaded.
  • Pre-built connectors: Integrates with leading cloud applications and databases.

Considerations:

  • Fivetran primarily focuses on cloud data warehouse integrations and may not be suitable for on-premise deployments.
  • Its pricing model is based on data volume, which can be a consideration for large-scale data processing.

7. Matilion: Data Productivity Cloud

Data Orchestration Tool Matillion

Matillion caters to complex data integration needs with its robust ETL/ELT capabilities. It offers a visual designer for building data pipelines and supports coding for advanced customization. 

Matillion’s strength lies in its ability to handle large-scale data volumes and complex transformations, making it suitable for enterprise-level data architectures.

Key Features:

  • Visual designer and coding support: Flexibility for users of all technical levels.
  • Scalable architecture: Handles large datasets and complex workflows efficiently.
  • Enterprise-grade security: Ensures data privacy and compliance.
  • Pre-built connectors: Integrates with various data sources and applications.

Considerations:

  • Matillion’s complexity can have a steeper learning curve compared to simpler tools.
  • Its pricing can be higher than some open-source or cloud-based alternatives. 

Data Pipeline Tools Pricing

Data Pipeline Tool

Pricing starts at

Pricing details

Peliqan $199/month View Peliqan Pricing
Apache Airflow $0.49/hour (on AWS) View Apache Airflow Pricing
AWS Glue $0.44/hour View AWS Glue Pricing
Hevo Data Subscription-based View Hevo Data Pricing
Stitch Data $100/month View Stitch Data Pricing
Fivetran Subscription-based View Fivetran Pricing
Matillion $2.00/credit View Matillion Pricing

Conclusion: Choosing the Right Data Pipeline Tool

In the ever-evolving landscape of data management, choosing the right data pipeline tool is crucial for ensuring the smooth flow of information within an organization. Peliqan.io leads the pack with its comprehensive features, user-friendly interface and affordable pricing.

However, the diverse range of tools listed above caters to different needs, preferences, and ecosystems. As you explore the possibilities, consider the unique requirements of your organization to make an informed decision and propel your data pipeline to new heights.

FAQ’s

1. What are the key benefits of using a data pipeline tool?

Data pipeline tools automate data movement and transformation, saving time and resources. They improve data quality and consistency, ensuring reliable insights. They also scale efficiently to handle growing data volumes and enable real-time data processing for faster decision-making.

2. What are the main differences between open-source and commercial data pipeline tools?

Open-source tools like Talend Open Studio are free and offer greater customization, but require more technical expertise to set up and manage. Commercial tools like Peliqan.io and Fivetran provide user-friendly interfaces and managed services, simplifying data integration but often come with subscription fees.

3. Which data pipeline tool is right for me?

The best tool depends on your specific needs. Consider factors like data volume, technical expertise, budget, integration requirements, and desired features. This blog post provides a comparison of different tools to help you make an informed decision.

4. How can I get started with using a data pipeline tool?

Most tools offer free trials or basic plans to get started. Begin by identifying your data sources and destinations, then explore the features and connectors offered by different tools. Utilize tutorials and documentation to learn the basics and build your first data pipeline.

5. What are some emerging trends in data pipeline technology?

  • Serverless data integration: Eliminates infrastructure management and simplifies scaling.
  • Real-time data streaming: Enables faster insights and decision-making.
  • Machine learning-powered data pipelines: Automates data cleansing and transformation.
  • Cloud-native and hybrid deployments: Increased flexibility and scalability.
Revanth Periyasamy

Revanth Periyasamy

Revanth Periyasamy is a process-driven marketing leader with over 5+ years of full-funnel expertise. As Peliqan's Senior Marketing Manager, he spearheads martech, demand generation, product marketing, SEO, and branding initiatives. With a data-driven mindset and hands-on approach, Revanth consistently drives exceptional results.

Recent Blog Posts

Exact Online Power BI Connection

Exact Online PowerBI Integration

Exact Online PowerBI Integration Table of Contents Connecting Exact Online with Power BI: A Complete Integration Guide The integration of enterprise financial systems with business intelligence tools has become increasingly crucial for modern organizations seeking

Read More »
BI in Data Warehouse

BI in Data Warehouse

BI in Data Warehouse Table of Contents BI in Data Warehouse: Maximizing Business Value Through Integrated Analytics In today’s digital landscape, data isn’t just an asset; it’s the foundation of strategic decision-making. Businesses are continuously looking for

Read More »

Customer Stories

CIC Hospitality is a Peliqan customer
CIC hotel

CIC Hospitality saves 40+ hours per month by fully automating board reports. Their data is combined and unified from 50+ sources.

Heylog
Truck

Heylog integrates TMS systems with real-time 2-way data sync. Heylog activates transport data using APIs, events and MQTT.

Globis
Data activation includes applying machine learning to predict for example arrival of containers in logistics

Globis SaaS ERP activates customer data to predict container arrivals using machine learning.

Ready to get instant access to
all your company data ?